
Eolian

Automatic EFL binding generation and more

Daniel Kolesa
Samsung Open Source Group

d.kolesa@osg.samsung.com
@octaforge

FOSDEM 2016



Introduction
What are we dealing with here?



What is EFL?

I Enlightenment Foundation Libraries

I A suite of graphics and other libraries (UI toolkit etc.)

I Originally created for the Enlightenment desktop shell

I Cross platform

I Significant usage includes the Tizen operating system



What is EFL?

I Enlightenment Foundation Libraries

I A suite of graphics and other libraries (UI toolkit etc.)

I Originally created for the Enlightenment desktop shell

I Cross platform

I Significant usage includes the Tizen operating system



What is EFL?

I Enlightenment Foundation Libraries

I A suite of graphics and other libraries (UI toolkit etc.)

I Originally created for the Enlightenment desktop shell

I Cross platform

I Significant usage includes the Tizen operating system



What is EFL?

I Enlightenment Foundation Libraries

I A suite of graphics and other libraries (UI toolkit etc.)

I Originally created for the Enlightenment desktop shell

I Cross platform

I Significant usage includes the Tizen operating system



What is EFL?

I Enlightenment Foundation Libraries

I A suite of graphics and other libraries (UI toolkit etc.)

I Originally created for the Enlightenment desktop shell

I Cross platform

I Significant usage includes the Tizen operating system



What is EFL?

I Enlightenment Foundation Libraries

I A suite of graphics and other libraries (UI toolkit etc.)

I Originally created for the Enlightenment desktop shell

I Cross platform

I Significant usage includes the Tizen operating system



The problem

I We provide a C API

I We need to use the API from different languages

I Maintaining bindings manually is difficult

I Can we generate them?

I With the right tooling, yes we can



The problem

I We provide a C API

I We need to use the API from different languages

I Maintaining bindings manually is difficult

I Can we generate them?

I With the right tooling, yes we can



The problem

I We provide a C API

I We need to use the API from different languages

I Maintaining bindings manually is difficult

I Can we generate them?

I With the right tooling, yes we can



The problem

I We provide a C API

I We need to use the API from different languages

I Maintaining bindings manually is difficult

I Can we generate them?

I With the right tooling, yes we can



The problem

I We provide a C API

I We need to use the API from different languages

I Maintaining bindings manually is difficult

I Can we generate them?

I With the right tooling, yes we can



The problem

I We provide a C API

I We need to use the API from different languages

I Maintaining bindings manually is difficult

I Can we generate them?

I With the right tooling, yes we can



What is Eolian?

I It’s several things

I It’s a declarative format for describing APIs

I It’s a C library to deal with these declarations

I It’s a generator for the core C API



What is Eolian?

I It’s several things

I It’s a declarative format for describing APIs

I It’s a C library to deal with these declarations

I It’s a generator for the core C API



What is Eolian?

I It’s several things

I It’s a declarative format for describing APIs

I It’s a C library to deal with these declarations

I It’s a generator for the core C API



What is Eolian?

I It’s several things

I It’s a declarative format for describing APIs

I It’s a C library to deal with these declarations

I It’s a generator for the core C API



What is Eolian?

I It’s several things

I It’s a declarative format for describing APIs

I It’s a C library to deal with these declarations

I It’s a generator for the core C API



Why is Eolian useful?

I Language independent API descriptions

I Automatic generation of bindings for any language

I Improved documentation

I Better tooling

I The possibilities are endless



Why is Eolian useful?

I Language independent API descriptions

I Automatic generation of bindings for any language

I Improved documentation

I Better tooling

I The possibilities are endless



Why is Eolian useful?

I Language independent API descriptions

I Automatic generation of bindings for any language

I Improved documentation

I Better tooling

I The possibilities are endless



Why is Eolian useful?

I Language independent API descriptions

I Automatic generation of bindings for any language

I Improved documentation

I Better tooling

I The possibilities are endless



Why is Eolian useful?

I Language independent API descriptions

I Automatic generation of bindings for any language

I Improved documentation

I Better tooling

I The possibilities are endless



Why is Eolian useful?

I Language independent API descriptions

I Automatic generation of bindings for any language

I Improved documentation

I Better tooling

I The possibilities are endless



Former state
EFL before Eo



How was it?

I Normal C API

I A lot of duplicated functions

I Difficult to bind

I Existing bindings often out of date



How was it?

I Normal C API

I A lot of duplicated functions

I Difficult to bind

I Existing bindings often out of date



How was it?

I Normal C API

I A lot of duplicated functions

I Difficult to bind

I Existing bindings often out of date



How was it?

I Normal C API

I A lot of duplicated functions

I Difficult to bind

I Existing bindings often out of date



How was it?

I Normal C API

I A lot of duplicated functions

I Difficult to bind

I Existing bindings often out of date



Eo

I We decided for an object system

I Goal: preserve C API and legacy compatibility

I Goal: preserve API/ABI compatibility even when adding
methods

I Existing solutions all had drawbacks

I Therefore Eo was created



Eo

I We decided for an object system

I Goal: preserve C API and legacy compatibility

I Goal: preserve API/ABI compatibility even when adding
methods

I Existing solutions all had drawbacks

I Therefore Eo was created



Eo

I We decided for an object system

I Goal: preserve C API and legacy compatibility

I Goal: preserve API/ABI compatibility even when adding
methods

I Existing solutions all had drawbacks

I Therefore Eo was created



Eo

I We decided for an object system

I Goal: preserve C API and legacy compatibility

I Goal: preserve API/ABI compatibility even when adding
methods

I Existing solutions all had drawbacks

I Therefore Eo was created



Eo

I We decided for an object system

I Goal: preserve C API and legacy compatibility

I Goal: preserve API/ABI compatibility even when adding
methods

I Existing solutions all had drawbacks

I Therefore Eo was created



Eo

I We decided for an object system

I Goal: preserve C API and legacy compatibility

I Goal: preserve API/ABI compatibility even when adding
methods

I Existing solutions all had drawbacks

I Therefore Eo was created



Eo

I Eo is an object system written in C

I Provides inheritance, interfaces, mixins, etc.

I Provides API/ABI compatibility and easy legacy wrappers

I But Eo itself is not enough

I A way to describe Eo classes was necessary



Eo

I Eo is an object system written in C

I Provides inheritance, interfaces, mixins, etc.

I Provides API/ABI compatibility and easy legacy wrappers

I But Eo itself is not enough

I A way to describe Eo classes was necessary



Eo

I Eo is an object system written in C

I Provides inheritance, interfaces, mixins, etc.

I Provides API/ABI compatibility and easy legacy wrappers

I But Eo itself is not enough

I A way to describe Eo classes was necessary



Eo

I Eo is an object system written in C

I Provides inheritance, interfaces, mixins, etc.

I Provides API/ABI compatibility and easy legacy wrappers

I But Eo itself is not enough

I A way to describe Eo classes was necessary



Eo

I Eo is an object system written in C

I Provides inheritance, interfaces, mixins, etc.

I Provides API/ABI compatibility and easy legacy wrappers

I But Eo itself is not enough

I A way to describe Eo classes was necessary



Eo

I Eo is an object system written in C

I Provides inheritance, interfaces, mixins, etc.

I Provides API/ABI compatibility and easy legacy wrappers

I But Eo itself is not enough

I A way to describe Eo classes was necessary



Eolian

I Thus Eolian was born

I We can describe all Eo objects effortlessly

I We can use these descriptions to generate bindings or C APIs

I We can also use them in tooling



Eolian

I Thus Eolian was born

I We can describe all Eo objects effortlessly

I We can use these descriptions to generate bindings or C APIs

I We can also use them in tooling



Eolian

I Thus Eolian was born

I We can describe all Eo objects effortlessly

I We can use these descriptions to generate bindings or C APIs

I We can also use them in tooling



Eolian

I Thus Eolian was born

I We can describe all Eo objects effortlessly

I We can use these descriptions to generate bindings or C APIs

I We can also use them in tooling



Eolian

I Thus Eolian was born

I We can describe all Eo objects effortlessly

I We can use these descriptions to generate bindings or C APIs

I We can also use them in tooling



Eolian
The basics



Eo file structure



Eolian library

I We provide C API to deal with Eo files

I Does parsing, memory management and utilities

I A fully compliant reference parser

I Can be bound to other languages



Eolian library

I We provide C API to deal with Eo files

I Does parsing, memory management and utilities

I A fully compliant reference parser

I Can be bound to other languages



Eolian library

I We provide C API to deal with Eo files

I Does parsing, memory management and utilities

I A fully compliant reference parser

I Can be bound to other languages



Eolian library

I We provide C API to deal with Eo files

I Does parsing, memory management and utilities

I A fully compliant reference parser

I Can be bound to other languages



Eolian library

I We provide C API to deal with Eo files

I Does parsing, memory management and utilities

I A fully compliant reference parser

I Can be bound to other languages



Generators

I Written using the provided APIs

I They emit the necessary glue code

I Can be done several ways depending on the language

I EFL has core generators for C, C++ and Lua

I The C generator is the actual C API of EFL



Generators

I Written using the provided APIs

I They emit the necessary glue code

I Can be done several ways depending on the language

I EFL has core generators for C, C++ and Lua

I The C generator is the actual C API of EFL



Generators

I Written using the provided APIs

I They emit the necessary glue code

I Can be done several ways depending on the language

I EFL has core generators for C, C++ and Lua

I The C generator is the actual C API of EFL



Generators

I Written using the provided APIs

I They emit the necessary glue code

I Can be done several ways depending on the language

I EFL has core generators for C, C++ and Lua

I The C generator is the actual C API of EFL



Generators

I Written using the provided APIs

I They emit the necessary glue code

I Can be done several ways depending on the language

I EFL has core generators for C, C++ and Lua

I The C generator is the actual C API of EFL



Generators

I Written using the provided APIs

I They emit the necessary glue code

I Can be done several ways depending on the language

I EFL has core generators for C, C++ and Lua

I The C generator is the actual C API of EFL



C generator

I We generate our own API

I Reduces maintenance overhead (only needs Eo files)

I Helps ensure correctness of our Eolian implementation

I Provides a reference for other generators



C generator

I We generate our own API

I Reduces maintenance overhead (only needs Eo files)

I Helps ensure correctness of our Eolian implementation

I Provides a reference for other generators



C generator

I We generate our own API

I Reduces maintenance overhead (only needs Eo files)

I Helps ensure correctness of our Eolian implementation

I Provides a reference for other generators



C generator

I We generate our own API

I Reduces maintenance overhead (only needs Eo files)

I Helps ensure correctness of our Eolian implementation

I Provides a reference for other generators



C generator

I We generate our own API

I Reduces maintenance overhead (only needs Eo files)

I Helps ensure correctness of our Eolian implementation

I Provides a reference for other generators



Generated C code



Other generators
What else do we get?



Non-binding tooling

I Eo files can be used for further analysis

I Example: GUI builder

I Widgets as Eo classes, app doesn’t need to know about them

I Example: documentation generator

I Generate documentation for APIs in different formats



Non-binding tooling

I Eo files can be used for further analysis

I Example: GUI builder

I Widgets as Eo classes, app doesn’t need to know about them

I Example: documentation generator

I Generate documentation for APIs in different formats



Non-binding tooling

I Eo files can be used for further analysis

I Example: GUI builder

I Widgets as Eo classes, app doesn’t need to know about them

I Example: documentation generator

I Generate documentation for APIs in different formats



Non-binding tooling

I Eo files can be used for further analysis

I Example: GUI builder

I Widgets as Eo classes, app doesn’t need to know about them

I Example: documentation generator

I Generate documentation for APIs in different formats



Non-binding tooling

I Eo files can be used for further analysis

I Example: GUI builder

I Widgets as Eo classes, app doesn’t need to know about them

I Example: documentation generator

I Generate documentation for APIs in different formats



Non-binding tooling

I Eo files can be used for further analysis

I Example: GUI builder

I Widgets as Eo classes, app doesn’t need to know about them

I Example: documentation generator

I Generate documentation for APIs in different formats



C++

I A core generator in the EFL

I Generates header only wrappers for EFL APIs

I Provides native C++-like object syntax

I Because of its header only nature, we don’t care about ABI
changes

I Also doesn’t change linkage over normal C API usage

I Interoperability with C API is also possible



C++

I A core generator in the EFL

I Generates header only wrappers for EFL APIs

I Provides native C++-like object syntax

I Because of its header only nature, we don’t care about ABI
changes

I Also doesn’t change linkage over normal C API usage

I Interoperability with C API is also possible



C++

I A core generator in the EFL

I Generates header only wrappers for EFL APIs

I Provides native C++-like object syntax

I Because of its header only nature, we don’t care about ABI
changes

I Also doesn’t change linkage over normal C API usage

I Interoperability with C API is also possible



C++

I A core generator in the EFL

I Generates header only wrappers for EFL APIs

I Provides native C++-like object syntax

I Because of its header only nature, we don’t care about ABI
changes

I Also doesn’t change linkage over normal C API usage

I Interoperability with C API is also possible



C++

I A core generator in the EFL

I Generates header only wrappers for EFL APIs

I Provides native C++-like object syntax

I Because of its header only nature, we don’t care about ABI
changes

I Also doesn’t change linkage over normal C API usage

I Interoperability with C API is also possible



C++

I A core generator in the EFL

I Generates header only wrappers for EFL APIs

I Provides native C++-like object syntax

I Because of its header only nature, we don’t care about ABI
changes

I Also doesn’t change linkage over normal C API usage

I Interoperability with C API is also possible



C++

I A core generator in the EFL

I Generates header only wrappers for EFL APIs

I Provides native C++-like object syntax

I Because of its header only nature, we don’t care about ABI
changes

I Also doesn’t change linkage over normal C API usage

I Interoperability with C API is also possible



Lua

I Also a core generator

I Written in Lua - easier string processing

I Requires no compiled code

I Loads EFL libraries at runtime

I Requires a runtime

I Uses LuaJIT



Lua

I Also a core generator

I Written in Lua - easier string processing

I Requires no compiled code

I Loads EFL libraries at runtime

I Requires a runtime

I Uses LuaJIT



Lua

I Also a core generator

I Written in Lua - easier string processing

I Requires no compiled code

I Loads EFL libraries at runtime

I Requires a runtime

I Uses LuaJIT



Lua

I Also a core generator

I Written in Lua - easier string processing

I Requires no compiled code

I Loads EFL libraries at runtime

I Requires a runtime

I Uses LuaJIT



Lua

I Also a core generator

I Written in Lua - easier string processing

I Requires no compiled code

I Loads EFL libraries at runtime

I Requires a runtime

I Uses LuaJIT



Lua

I Also a core generator

I Written in Lua - easier string processing

I Requires no compiled code

I Loads EFL libraries at runtime

I Requires a runtime

I Uses LuaJIT



Lua

I Also a core generator

I Written in Lua - easier string processing

I Requires no compiled code

I Loads EFL libraries at runtime

I Requires a runtime

I Uses LuaJIT



Elua

I A library and a launcher for Lua EFL applications

I Provides some core functions needed by all applications

I Small and lightweight

I Also offers various C utilities for state management

I Also offers i18n support



Elua

I A library and a launcher for Lua EFL applications

I Provides some core functions needed by all applications

I Small and lightweight

I Also offers various C utilities for state management

I Also offers i18n support



Elua

I A library and a launcher for Lua EFL applications

I Provides some core functions needed by all applications

I Small and lightweight

I Also offers various C utilities for state management

I Also offers i18n support



Elua

I A library and a launcher for Lua EFL applications

I Provides some core functions needed by all applications

I Small and lightweight

I Also offers various C utilities for state management

I Also offers i18n support



Elua

I A library and a launcher for Lua EFL applications

I Provides some core functions needed by all applications

I Small and lightweight

I Also offers various C utilities for state management

I Also offers i18n support



Elua

I A library and a launcher for Lua EFL applications

I Provides some core functions needed by all applications

I Small and lightweight

I Also offers various C utilities for state management

I Also offers i18n support



Eo objects and Lua

I We use LuaJIT FFI to access EFL API

I FFI not exposed to apps - needs safe wrappers

I We don’t want to generate too much boilerplate

I We generate simple declarative wrappers

I Calls are done using a special object runtime



Eo objects and Lua

I We use LuaJIT FFI to access EFL API

I FFI not exposed to apps - needs safe wrappers

I We don’t want to generate too much boilerplate

I We generate simple declarative wrappers

I Calls are done using a special object runtime



Eo objects and Lua

I We use LuaJIT FFI to access EFL API

I FFI not exposed to apps - needs safe wrappers

I We don’t want to generate too much boilerplate

I We generate simple declarative wrappers

I Calls are done using a special object runtime



Eo objects and Lua

I We use LuaJIT FFI to access EFL API

I FFI not exposed to apps - needs safe wrappers

I We don’t want to generate too much boilerplate

I We generate simple declarative wrappers

I Calls are done using a special object runtime



Eo objects and Lua

I We use LuaJIT FFI to access EFL API

I FFI not exposed to apps - needs safe wrappers

I We don’t want to generate too much boilerplate

I We generate simple declarative wrappers

I Calls are done using a special object runtime



Eo objects and Lua

I We use LuaJIT FFI to access EFL API

I FFI not exposed to apps - needs safe wrappers

I We don’t want to generate too much boilerplate

I We generate simple declarative wrappers

I Calls are done using a special object runtime



The future
What’s still not done?



Stabilize!

I Stabilization is the primary goal

I Not happening for a few more releases

I Documentation is still ongoing task

I We’re unsure about handling ownership

I Functions and their binding still needs to be solved

I Refactor the implementation and fix all quirks



Stabilize!

I Stabilization is the primary goal

I Not happening for a few more releases

I Documentation is still ongoing task

I We’re unsure about handling ownership

I Functions and their binding still needs to be solved

I Refactor the implementation and fix all quirks



Stabilize!

I Stabilization is the primary goal

I Not happening for a few more releases

I Documentation is still ongoing task

I We’re unsure about handling ownership

I Functions and their binding still needs to be solved

I Refactor the implementation and fix all quirks



Stabilize!

I Stabilization is the primary goal

I Not happening for a few more releases

I Documentation is still ongoing task

I We’re unsure about handling ownership

I Functions and their binding still needs to be solved

I Refactor the implementation and fix all quirks



Stabilize!

I Stabilization is the primary goal

I Not happening for a few more releases

I Documentation is still ongoing task

I We’re unsure about handling ownership

I Functions and their binding still needs to be solved

I Refactor the implementation and fix all quirks



Stabilize!

I Stabilization is the primary goal

I Not happening for a few more releases

I Documentation is still ongoing task

I We’re unsure about handling ownership

I Functions and their binding still needs to be solved

I Refactor the implementation and fix all quirks



Stabilize!

I Stabilization is the primary goal

I Not happening for a few more releases

I Documentation is still ongoing task

I We’re unsure about handling ownership

I Functions and their binding still needs to be solved

I Refactor the implementation and fix all quirks



More testing and changes

I We need more generators to help us test

I JavaScript V8 generator is coming up

I We also need to update all of EFL eo files

I This should help uncover any potential problems



More testing and changes

I We need more generators to help us test

I JavaScript V8 generator is coming up

I We also need to update all of EFL eo files

I This should help uncover any potential problems



More testing and changes

I We need more generators to help us test

I JavaScript V8 generator is coming up

I We also need to update all of EFL eo files

I This should help uncover any potential problems



More testing and changes

I We need more generators to help us test

I JavaScript V8 generator is coming up

I We also need to update all of EFL eo files

I This should help uncover any potential problems



More testing and changes

I We need more generators to help us test

I JavaScript V8 generator is coming up

I We also need to update all of EFL eo files

I This should help uncover any potential problems



Thank you.

Daniel Kolesa
Samsung Open Source Group
d.kolesa@osg.samsung.com

@octaforge
FOSDEM 2016


